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8.1 Let (X, d1) and (Y, d2) be two metric spaces and let f : X → Y be a continuous function.
Assume that the following three conditions are satis�ed:

1. f is an open map, i.e. f(U) is an open subset of Y for any open set U ⊂ X.

2. f is a proper map, i.e. for any K ⊂ Y which is compact, f−1(K) is a compact subset of X.

3. Y is connected.

Show that f is surjective.

Solution. In order to show that f(X) = Y , it su�ces to show that f(X) is a non-empty, open
and closed subset of Y . Since X ̸= ∅, we have that f(X) ̸= ∅ as well. Moreover, in view of our
assumption that f is an open map, f(X) is an open subset of Y . Finally, in order to show that f(X)
is closed, we will argue by contradiction: In the case when f(X) ⊆ Y is not closed, then the set
C = clos

(
f(X)

)
\ f(X) must be non-empty. Let ȳ ∈ C; in particular, y /∈ f(X). Since (Y, d2) is a

metric space and f(X) is dense in clos(f(X)), there exists a sequence of points yn = f(xn) in f(X)
with yn

n→∞−−−→ ȳ. The set K = ∪n∈N{yn} ∪ {ȳ} is a compact subset of Y (since, for any open cover
A = {Ui}i∈I of K, any open set Ui0 ∈ A with ȳ ∈ Ui0 will contain all but �nitely many of the points
yn; thus, there exists a �nite subset of A which still covers all of K). By our assumption that f is
a proper map, the set f−1(K) ⊂ X is compact. Thus the sequence xn lies inside a compact subset
of X and, as a result, has a convergent subsequence {xnk

}k∈N; let us denote with x̄ = limk→∞ xnk
.

Since f is continuous, we must have

f(x̄) = f
(
lim
k→∞

xnk

)
= lim

k→∞
f(xnk

) = lim
k→∞

ynk
= ȳ.

Thus, ȳ ∈ f(X), which is a contradiction.

8.2 Let (M, g) be a homogeneous Riemannian manifold (i.e. for any two points p, q ∈ M, there
exists an isometry F : M → M such that F (p) = q). Show that (M, g) is complete.

Hint: You might want to use the fact that isometries map geodesics to geodesics, to infer that
every point on M has the same injectivity radius. Under this condition, can a maximal geodesic
be incomplete?

Solution. In view of the Hopf�Rinow theorem, it su�ces to show that any maximally extended
geodesic γ : I → M is complete, i.e. I = R. To this end, it su�ces to show that there exists an
ϵ > 0 such that the injectivity radius of any point p ∈ M satis�es ι(p) > ϵ. Assume for a moment
that this is true; in that case, let γ : (a, b) → M be a geodesic of (M, g) parametrised with unit
speed (i.e. ∥γ̇∥ = 1) and such that b < +∞. Let s0 =

1
2
(b− ϵ) and q = γ(s0). Then, since ι(q) > ϵ,

any geodesic starting from q with initial velocity v ∈ TqM with ∥v∥ = 1 can be de�ned for time
t < ϵ (since expq(tv) is well de�ned for s < ϵ). Therefore, the geodesic γ(s) can be extended for
s ∈ (a, s0 + ϵ) = (a, b+ ϵ

2
). In the case when a > −∞, by arguing similarly near the endpoint s = a,

we also deduce that γ(s) can be extended as a geodesic for s ∈ (a − ϵ
2
, b + ϵ

2
). As a result, if γ is

maximally extended, then it is necessary that a = −∞ and b = +∞, i.e. that γ is complete.
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It remains to prove that there exists an ϵ > 0 such that ι(p) > ϵ for all p ∈ M. In fact, we will
prove the stronger statement that every point on M has the same injectivity radius (which is, thus,
a strictly positive number). Let p, q ∈ M; our assumption that (M, g) is homogeneous means that
there exists an isometry F : M → M such that F (p) = q. In view of Exercise 6.1, the isometry F
�commutes� with the exponential map, i.e.

F ◦ expp = expF (p) ◦dFp = expq ◦dFp.

Therefore, let ρ > 0 be such that expp is well de�ned on the ball

B(p)
ρ

.
=

{
v ∈ TpM : ∥v∥ ⩽ ρ

}
and expp : B

(p)
ρ → expp(B

(p)
ρ ) ⊂ M is a di�eomorphism. Then, since expq(dF (v)) = F (expp(v)) and

F is a di�eomorphism (as an isometry), the map expq(w) is well de�ned for any w ∈ dF (B
(p)
ρ ) and

is a di�eomorphism on dF (B
(p)
ρ ). Since ∥dF (v)∥ = ∥v∥ (by our assumption that F is an isometry),

we have that
dF (B(p)

ρ ) = B(q)
ρ

.
=

{
w ∈ TqM : ∥w∥ ⩽ ρ

}
.

Recall that the injectivity radius ι(z) of z ∈ M is de�ned as

ι(z) = sup
{
ρ > 0 : expz(·) is well-de�ned on B(z)

ρ and expz : B
(z)
ρ → M is a di�eomorphism on its image

}
.

Therefore, the above discussion implies that ι(p) = ι(q).

8.3 A Riemannian manifold (M, g) is called isotropic if, for every p ∈ M and every v1, v2 ∈ TpM
with ∥v1∥ = ∥v2∥, there exists an isometry F of (M, g) with F (p) = p and dF (v1) = v2 (in
other words, around p the space (M, g) �looks the same� in every direction).

(a) Can you �nd an example of an isotropic Riemannian manifold? An example of a homo-
geneous but not isotropic Riemannian manifold?

(b) Show that a connected, complete and isotropic Riemannian manifold (M, g) is also ho-
mogeneous (see Ex. 8.2). Hint: For any p, q ∈ M, let x be the midpoint of a geodesic
segment connecting p to q (why does it exist?); consider the set of isometries that �x x.

(c) Show that the assumption on (M, g) being complete above is redundant, i.e. that every
connected and isotropic Riemannian manifold is also complete (and, hence, homogeneous).
Hint: If γ : (a, b) → M, 0 ∈ (a, b), is a maximal geodesic, show that the isotropic condition
implies that a = −b. Note that this should be true for all points along the geodesic.

Solution. (a) The sphere, the plane and the hyperbolic plane are all examples of homogeneous
and isotropic Riemannian manifolds. An example of a non-compact homoegeneous but not isotropic
space is the cylinder C = {(x, y, z) ∈ R

3 : x2 + y2 = 1} equipped with the induced metric g from
(R3, gE). If we use polar coordinates (r, θ) in the (x, y)-plane (i.e. x = r cos θ, y = r sin θ), then C
corresponds to the subset {r = 1} of R3 parametrized by (θ, z) ∈ [0, 2π)× R; in these coordinates,

g = dθ2 + dz2
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(note, in particular, that (C, g) is locally �at). Translations in the z direction and rotations in the
(x, y) plane (i.e. translations in the θ variable) are all isometries of C, and a combination of those can
map any pair of points p, q ∈ C to each other. However, (C, g) cannot be isotropic: Any isometry F
will have to map geodesics to geodesics and, therefore, if an isometry F : C → C existed which �xed

a point p ∈ C and dF |p mapped ∂
∂θ

∣∣∣
p
to a tangent vector parallel to ∂

∂z

∣∣∣
p
, then F should map the

maximal geodesic through p in the direction of ∂
∂θ

∣∣∣
p
to the maximal geodesic through ∂

∂z

∣∣∣
p
; however,

this is impossible, since the former geodesic has compact image (being a closed circle), while the
latter is an in�nite straight line.

An example of a compact homogeneous but not isotropic space is the �at torus T2 = R
2
/
Z
2

(i.e. where points (x, y) and (x̄, ȳ) in R2 are identi�ed if (x−x̄, y− ȳ) ∈ Z×Z; thus, T2 is parametrized
by the unit square [0, 1) × [0, 1)), equipped with the �at metric gE = dx2 + dy2. In this case, any
translation (x, y) → (x + a1, y + a2) mod Z2 for some �xed (a1, a2) ∈ R

2 is an isometry of (T2, gE);
thus, any pair of points p, q ∈ T

2 can be mapped to each other through an isometry. On the other
hand, there can be no isometry �xing (0, 0) mod Z2 and mapping ∂

∂x
to a tangent vector parallel to

∂
∂x

+ ∂
∂y
; this is because the corresponding closed geodesics of (T2, gE) in these directions (namely the

bottom edge of the unit square and the diagonal of the square, respectively) have di�erent length (1
and

√
2, respectively) and, thus, one cannot be the image of the other through an isometry.

(b) Let p, q be two points on M. Since (M, g) was assumed to be complete, the theorem of
Hopf�Rinow states that the map expp : TpM → M is onto. Therefore, there exists a geodesic
γ : [0, 1] → M such that γ(0) = p and γ(1) = q (this is simply the geodesic γ(t) = expp(tv) for a
v ∈ TpM such that expp v = q). Let us consider the point z = γ(1

2
) and let us set w = −γ̇(1

2
) ∈ TzM.

Since (M, g) was assumed to be isotropic, there exists an isometry F : M → M such that

F (z) = z and dF |z(w) = −w. (1)

We will show that F maps γ([0, 1]) to itself by switching the endpoints γ(0) = p and γ(1) = q.
Let us consider the curves γ̃(t) = expz(tw) and γ̃′(t) = expz(−tw), t ∈ [−1

2
, 1
2
]. Note that

γ̃(t) = γ(−t+ 1
2
) and γ̃′(t) = γ(t+ 1

2
) (this can be readily veri�ed by checking that all those curves

are geodesics and the corresponding pairs have the same initial conditions at t = 0, hence they are
equal by the uniqueness of solutions to the geodesic equation). Therefore,

γ̃(
1

2
) = p, γ̃′(

1

2
) = q.

Using the fact that any isometry �commutes� with the exponential map (see Ex. 6.1), we obtain

F (expz(tw)) = expF (z)(t · dF |z(w)) for t ∈ [−1

2
,
1

2
].

Using the property (1) of F and the de�nition of the curves γ̃, γ̃′, we infer that

F (γ̃(t)) = F (expz(tw)) = expF (z)(tdF |z(w)) = expz(−tw) = γ̃′(t)

and, therefore, setting t = 1
2
:

F (p) = q.
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(c) In view of the Hopf-Rinow theorem, in order to show that (M, g) is complete it su�ces to
show that it is geodesically complete. To this end, we will argue by contradiction: Assume that
(M, g) is not geodesically complete, then there exists a maximally extended geodesic γ : (a, b) → M
such that a > −∞ or b < +∞; without loss of generality, let us assume that b < +∞ (the case
a > −∞ being completely analogous). The fact that γ is maximally extended means that there
exists no other geodesic γ̃ : I → M on an interval I ⊋ (a, b) such that γ̃|(a,b) = γ.

Let t0 ∈ (a, b) be su�ciently close to b so that

t0 − a > b− t0

(the left hand side being +∞ in the case when a = −∞) and let us set z = γ(t0) and w = γ̇(t0) ∈
TzM. By our assumption that (M, g) is isotropic, there exists an isometry F : M → M such that

F (z) = z and dF |z(w) = −w. (2)

We will show that F ��ips� γ around z, thus allowing us to extend γ(t) beyond t = t0 for time
t = t0 + (t0 − a) > t0 + (b− t0) = b.

Let us consider the curve γ̃(s) = expz(sw). Note that γ̃(s) = γ(s + t0) (since, as before, both
curves are geodesics and have the same initial conditions at s = 0). Thus, since γ(t) is well-de�ned
for t ∈ (a, b), the curve γ̃(s) is well-de�ned for s ∈ (a− t0, b− t0). Moreover, we have that

F (γ̃(−s)) = γ̃(s) for s ∈ (−δ, δ)

for any 0 < δ < min{t0 − a, b − t0} = b − t0, in view of the fact that both F (γ̃(−s)) and
γ̃(s) are geodesics (since F maps geodesics to geodesics) and they satisfy F (γ̃(0)) = γ̃(0) and
d
ds
F (γ̃(−s))

∣∣∣
s=0

= dF (−w) = w = d
ds
γ̃(−s)

∣∣∣
s=0

.

Let us consider now the curve γ̂ : (a− t0, t0 − a) → M de�ned by

γ̂(s) =

{
γ̃(s), s ∈ (a− t0, 0],

F (γ̃(−s)), s ∈ [0, t0 − a).

This is a C1 curve (since, as explained above, F (γ̃(0)) = γ̃(0) and d
ds
F (γ̃(−s))

∣∣∣
s=0

= d
ds
γ̃(−s)

∣∣∣
s=0

),

satisfying in addition the following properties:

� γ̂(s) satis�es the geodesic equation on (a− t0, 0) ∪ (0, t0 − a), since it coincides there with the
geodesics γ̃(s) and F (γ̃(−s)), respectively.

� γ̂(s) = γ̃(s) on (−δ, δ) for any 0 < δ < b − t0 as explained above and, therefore, γ̂(s) also
satis�es the geodesic equation around s = 0.

Thus, γ̂ is a geodesic. Since γ̂(s) = γ̃(s) in a neighborhood of s = 0, we deduce from the uniqueness
property of the initial value problem for the geodesic equation that γ̂(s) = γ̃(s) for s in the domain
of de�nition of both γ̂ and γ̃; equivalently,

γ̂(t− t0) = γ(t) for t ∈ (a, b).

Therefore, γ̂(t− t0) is a geodesic de�ned on (a, 2t0 − a) ⊋ (a, b) which coincides with γ(t) on (a, b),
which is a contradiction in view of our assumption that γ is maximally extended.
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8.4 Let F : (M, g) → (N , h) be a local isometry between two Riemannian manifolds (recall that
a local isometry is a map for which dF |p : TpM → TF (p)N is 1-1 and onto for all p ∈ M and
F ∗h = g). Assume that N is connected and (M, g) is complete. Show that F is onto and that
(N , h) is also complete. Is F necessarily 1− 1?

Solution. Let p be a point in M. Without loss of generality, we can assume that M is connected
(otherwise we can just restrict to the connected component of p in M). Since (M, g) is complete,
by the Hopf�Rinow theorem we know that it is also geodesically complete, hence expp is de�ned on
all of TpM and expp(TpM) = M. For any v ∈ TpM, we have

F (expp v) = expF (p)(dF |p(v)) (3)

(the proof of the above is the same as in the case when F is a global isometry, since it is only
local in nature), where the exponential map in the right hand side is associated to the Riemannian
metric h on N . Therefore, expF (p)(w) is well-de�ned for any w ∈ TF (p)N of the form w = dF |p(v),
v ∈ TpM. Since dF |p : TpM → TF (p)N is onto (due to our assumption that F is a local isometry),
we infer that expF (p) is de�ned on all of TF (p)N , i.e. every geodesic of (N , h) passing through F (p) is
complete. By the Hopf�Rinow theorem (in view of the fact that N was assumed to be connected),
this implies that (N , h) is complete and that expF (p) : TF (p)N → N is onto. Since, as explained
earlier, dF |p : TpM → TF (p)N is onto as well, we deduce that expF (p) ◦dF |p : TpM → N is onto; in
view of the relation (3), this implies that, for every y ∈ N , there exists a v ∈ TpM such that, setting
x = expp v ∈ M:

F (x) = y

i.e. that F (M) = N .
The map F doesn't necessarily have to be 1-1: For instance, the quotient map F : (R2, gE) →

(T2, gE) de�ned by F (x, y) = (x mod Z, y mod Z) satis�es all of the conditions of the exercise but
is not 1-1.
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